Основы современной космологии

По сути дела, существовавшие на каждом этапе развития человеческой цивилизации представления о строении мира можно считать космологическими теориями соответствующей эпохи. Геоцентрическая система Аристотеля — Птолемея стала первой научно обоснованной космологической моделью Вселенной. Спустя 1500 лет ее сменила новая космологическая модель — гелиоцентрическая система, предложенная Коперником.

Космология — раздел астроно­мии, который изучает строение и эволюцию Вселенной в целом, используя при этом методы и до­стижения физики, математики и философии.

Теоретические модели, описы­вающие наиболее общие свойства строения и эволюции Вселенной, проверяются астрофизическими ме­тодами наблюдений. Очевидно, что выводы космологии имеют важное значение для формирования совре­менной научной картины мира.

Теоретическим фундаментом современной космологии явилась созданная Альбертом Эйнштейном (1879 — 1955) в начале XX в. общая теория относительности — релятивистская теория тяготения. Наиболее существенным отличием современных космологических моделей, первые из которых были разработаны Александром Александровичем Фридманом (1888 — 1925) на основе теории Эйнштейна, является их эволюционный характер. Идея глобальной эволюции Вселенной оказалась столь необычной, что первоначально не была принята даже самим создателем теории относительности, таким выдающимся ученым, как Эйнштейн.

Даже позднее, когда стало очевидно, что все объекты во Вселенной изменяются с течением времени, казалось, что процессы, происходящие в ее отдельных составных частях, не меняют облика всей Вселенной.

Эта идея была для Эйнштейна настолько очевидной, что для уравнений теории относительности, примененных ко всей Вселенной, он стал искать решения, описывающие ее состояние, не меняющееся со временем. Для того чтобы уравновесить силы тяготения, он предположил, что кроме них во Вселенной существует сила отталкивания. Эта сила должна быть универсальной, зависящей только от расстояния между телами и независящей от их массы. Ускорение, которое она будет создавать этим телам, должно быть пропорционально расстоянию: а = const · R. Так в уравнениях появилась Λ. обусловленная гипотетическими силами отталкивания космологическая постоянная — лямбда-член.

В 1922 — 1924 гг. российский математик Фридман вывел из общей теории относительности Эйнштейна уравнения, которые описывали общее строение и эволюцию Вселенной. Решения, полученные Фридманом для этих космологических уравнений, означали, что материя в масштабах однородной и изотропной Вселенной не может находиться в покое — Вселенная должна либо сжиматься, либо расширяться. Суть этого вывода, сделанного на основе математически строгого решения уравнений, можно объяснить довольно просто, оперируя только привычными понятиями теории тяготения Ньютона.

Будем исходить из предположения, что в больших масштабах распределение вещества во Вселенной можно считать однородным. Тогда галактика, которая находится на поверхности шара произвольного радиуса, притягивается к его центру согласно закону всемирного тяготения с силой, прямо пропорциональной массе шара М и обратно пропорциональной квадрату его радиуса R. Все остальные галактики, лежащие вне этого шара, не меняют величины этой силы. Для доказательства этого важного утверждения произвольно выделим во Вселенной шаровой слой толщиной h такого радиуса, чтобы внутри него оказались не только галактика А, но и весь шар радиуса R (рис. 6.26).

Рассмотрим силы тяготения, действующие на галактику А со стороны тех галактик, которые расположены в этом слое в противоположных от нее направлениях. Эти силы создаются галактиками, расположенными в объеме элементов слоя V1 и V2. Сравним объем и массу этих элементов. Толщина их одинакова — h, а площади S1 и S2 и объемы пропорциональны квадратам расстояний от галактики до поверхности слоя — r1 и r2:

 

Так как распределение галактик во Вселенной считается однородным, отношение масс этих элементов будет таким же:

Силы, с которыми эти массы притягивают галактику А, согласно закону всемирного тяготения равны:

и

где m — масса галактики А.

Запишем отношение этих сил

и, подставив в него значение  получим


или

F1 = F2.

Таким образом, эти силы, равные по абсолютной величине и направленные в противоположные стороны, уравновешивают друг друга. Значит, галактики, находящиеся вне шара радиуса R, не влияют на величину силы, с которой галактика А притягивается галактиками, находящимися внутри этого шара.

Следовательно, можно написать следующее выражение для ускорения, которое имеет одна из этих галактик по отношению к галактике, расположенной в его центре:

Знак минус означает, что ускорение соответствует притяжению, а не отталкиванию. Из этой формулы следует, что Вселенная должна быть нестационарной, поскольку в ней действует тяготение. Галактики могут находиться в покое только мгновение. В следующий момент они придут в движение и будут сближаться под действием сил тяготения. Если же в начальный момент галактики будут иметь скорости, направленные так, чтобы они удалялись друг от друга, то в этом случае тяготение будет тормозить расширение Вселенной. Величина и направление скорости, которую имеют галактики в определенный момент, из теории тяготения не выводятся, их можно получить только на основе наблюдений.

Теоретические выводы Фридмана получили важное наблюдательное подтверждение в открытом Хабблом законе пропорциональности скорости удаления галактик их расстоянию:

v = Н · R.

Этот закон не выполняется только для нескольких ближайших галактик, включая Туманность Андромеды.

Удаление галактик, которое происходит во все стороны со скоростями, прямо пропорциональными расстоянию от нас, не означает, однако, что наша Галактика занимает какое-то особое положение во Вселенной. Точно такая же картина «разбегания» галактик будет наблюдаться для любой другой галактики.

Выберем в пространстве, занятом галактиками, произвольно направленную прямую, которая проходит через нашу Галактику (рис. 6.27). На этой прямой окажется несколько галактик. которые удаляются со скоростями, подчиняющимися закону Хаббла, от нашей Галактики А (рис. 6.27, а). Теперь попробуем представить, какую картину разбегания галактик мы увидим, если перенесемся на галактику В, Для того чтобы определить скорости всех галактик относительно нее, надо из скоростей, изображенных на рисунке 6.27, а, вычесть скорость галактики В (рис. 6.27, б). Полученная картина, которая представлена на рисунке 6.27. в, принципиально но отличается от предыдущей: скорости удаления галактик по-прежнему пропорциональны расстояниям.

Для того чтобы узнать, когда примерно началось наблюдаемое расширение, необходимо воспользоваться постоянной Хаббла H. Галактика, находящаяся от нас на расстоянии R, удаляется со скоростью H · R. Следовательно, разделив расстояние, пройденное галактикой с момента начала расширения, на ее скорость, мы получим:

R/(H · R) = 1/H.

Величина, обратная постоянной Хаббла, дает примерную оценку времени, которое прошло с момента начала расширения Вселенной. Нетрудно подсчитать, что это время составляет примерно 13,5 млрд. лет.

Открытие Хабблом «красного смещения» и работы Фридмана, показавшего, что Вселенная не может быть стационарной, явились только началом исследований эволюции Вселенной.

Взаимное удаление галактик означает, что в прошлом они были гораздо ближе друг к другу, чем теперь. В еще более раннюю эпоху плотность вещества была так велика, что во Вселенной не могло существовать ни галактик, ни звезд и никаких других наблюдаемых ныне объектов. Расчеты прошлого, проведенные на основе космологических моделей Фридмана, показывают, что в момент начала расширения Вселенной ее вещество должно иметь огромную (бесконечно большую) плотность.

Перед наукой встала задача изучения тех физических процессов, которые происходят в расширяющейся Вселенной на разных этапах её эволюции вплоть до современности, а также тех, которые предстоят во Вселенной в будущем.

В 1948 г. в работах Георгия Антоновича Гамова (1904 — 1968) и его сотрудников была выдвинута гипотеза о том, что вещество во Вселенной на начальных стадиях расширения имело не только большую плотность, но и высокую температуру. Так, спустя 0,1 с после начала расширения температура была около 3 · 1010 К. При столь высокой температуре взаимодействие фотонов высокой энергии, которых в горячем веществе было много, приводило к образованию пар всех известных частиц и античастиц: электрон — позитрон, нейтрино — антинейтрино и т.п. При аннигиляции этих пар снова рождались фотоны, а протоны и нейтроны, взаимодействуя с ними, превращались друг в друга.

При очень высокой температуре сложные атомные ядра существовать не могут — они моментально были бы разрушены окружающими энергичными частицами, поэтому не образуются даже ядра дейтерия, хотя нейтроны и протоны существуют.

По мере расширения плотность вещества и его температура уменьшаются. Позднее, когда температура в расширяющейся Вселенной опустится ниже 1 млрд. К, станет возможным сохранение некоторого количества ядер дейтерия и, следовательно, образование гелия. Согласно расчетам, к этому моменту нейтроны составят примерно 15% массы всего вещества. Остальное вещество — протоны (ядра атомов водорода). Соединение равного количества протонов и нейтронов приведет к образованию дейтерия, а в процессе следующих ядерных реакций образуются ядра гелия. Рассматривая ядерные реакции в горячем веществе в начале космологического расширения, удалось рассчитать, что в процессе этих реакций могли образоваться только водород и гелий. Спустя пять минут после начала расширения, когда температура во Вселенной становится недостаточной для термоядерных реакций, вещество состоит из смеси ядер водорода (70% массы) и ядер гелия (30%). Таким его состав остается до того времени, пока не происходит образование звезд и галактик.

Исследования показали, что содержание гелия в звездах и межзвездном веществе действительно составляет около 30% по массе. Это достаточно хорошо согласуется с выводами теории, которая основана на предположении о «горячей Вселенной».

Спустя примерно миллион лет после начала расширения, когда температура снижается до 4000 К, ядра атомов водорода и гелия, захватывая электроны, превращаются в нейтральные атомы. Эта эпоха явилась важнейшим этапом в эволюции Вселенной. Во-первых, только с появлением нейтрального вещества становится возможным формирование отдельных небесных тел и их систем. Во-вторых, излучение, которое играло важную роль в процессах, происходивших прежде, практически не взаимодействовало с нейтральным веществом. Иначе говоря, теория «горячей Вселенной» предсказывала существование в настоящее время реликтового электромагнитного излучения, оставшегося от того далекого прошлого, когда вещество во Вселенной было плотным и горячим. Температура этого излучения, которая в процессе космологического расширения уменьшалась так же, как и температура вещества, должна составлять в нашу эпоху всего несколько кельвинов. Это излучение, получившее название реликтового, было случайно обнаружено на волне 7,35 см американскими инженерами Арно Пензиасом и Робертом Вильсоном. Открытие реликтового излучения явилось одним из важнейших научных открытий XX в., которое подтвердило, что на ранних стадиях расширения Вселенная была горячей. Авторы этого открытия в 1978 г. удостоены Нобелевской премии по физике.

Обнаружение реликтового излучения — очень важное, но не единственное достижение космологии за последние десятилетия. К их числу относится теоретическое исследование крупномасштабной структуры Вселенной, проведенное академиком Я. Б. Зельдовичем и его учениками. В процессе эволюции Вселенной флуктуации плотности вещества под действием гравитации должны постепенно превращаться в объекты, напоминающие по своей форме блины. Наблюдения подтвердили, что именно такие структуры образуют во Вселенной галактики, их скопления и сверхскопления.

Теория горячей расширяющейся Вселенной, которая опирается на работы А. Д. Фридмана и Г. А. Гамова, стала общепризнанной, хотя не смогла дать ответ на два важных вопроса: в чем первопричина взаимного удаления галактик и как в дальнейшем будет происходить расширение Вселенной.

Найти ответы на эти вопросы удалось новому поколению ученых. Оба ответа оказались весьма неожиданными. В 1965 г. российский физик-теоретик Э. Б. Глинер выдвинул гипотезу, согласно которой начальным состоянием Вселенной был вакуум. Дальнейшие исследования показали, что для гравитационных сил вакуума характерно не привычное всем притяжение, а отталкивание.

Чтобы ответить на второй вопрос, необходимо было установить зависимость скорости удаления галактики от расстояния до нее. В первом приближении она выражается законом Хаббла: v = H · R. Чтобы проверить, насколько эта зависимость выполняется для наиболее удаленных объектов, необходимо определить скорость галактики и ее расстояние независимо друг от друга. Измерения тригонометрического параллакса для определения расстояния до галактик непригодны. Для таких огромных расстояний используется метод фотометрического параллакса. Поток фотонов, приходящих от источника излучения и регистрируемых наблюдателем, обратно пропорционален квадрату расстояния до источника. Если известна мощность излучения (светимость) наблюдаемого объекта, то, измерив поток света, можно вычислить, на каком расстоянии этот объект находится.

Оказалось, что объектами с известной светимостью являются наиболее яркие сверхновые звезды, светимость которых в момент вспышки сравнима со светимостью целой галактики — Сверхновые типа 1а. При наблюдениях этих звезд независимо измерялись две величины. Первая — красное смещение линий в спектре. Оно выражается величиной z = (λλ0)/λ0, где λ — длина волны регистрируемого излучения, a λ0 — длина волны испускаемого излучения. Вторая — блеск звезды, который выражается в звездных величинах — т. По существу, это освещенность, которая создастся звездой на плоскости, перпендикулярной к лучу зрения. Зная, что светимость всех Сверхновых типа 1а одинакова, можно вычислить расстояние до каждой из них.

На графике (рис. 6.28) показаны кривые, которые соответствуют двум возможным вариантам зависимости расстояния до звезды от красного смещения. Кривая А соответствует известному закону Хаббла. Кривая В при малых z практически сливается с кривой А, но при больших значениях z проходит значительно выше. Наблюдаемое отклонение существенно превышает ошибки измерения, что и позволило сделать вывод: Вселенная расширяется с ускорением. Это означает, что расширение Вселенной будет продолжаться неограниченно. Более того, ученые пришли к выводу: наблюдаемое ускорение создает неизвестный прежде вид материи, который обладает свойством антигравитации, Он получил название темной энергии, За это открытие две группы ученых получили Нобелевскую премию но физике за 2011 год.

Открытие антитяготения, которое оказалось неожиданным для большинства людей, подтвердило предвидение А. Эйнштейна.

В связи с этим выяснился глубокий смысл λ-члена в уравнениях обшей теории относительности. А. Эйнштейн, по существу, выдвинул гипотезу о наличии во Вселенной материи, которая создает не притяжение, а отталкивание. Наблюдения подтвердили справедливость этой гипотезы. Дальнейшие исследования позволили выяснить, что по своей природе темная энергия является практически однородной, в отличие от двух других составляющих Вселенной — «обычной» и темной материи, которые распределены в космическом пространстве неоднородно, образуя звезды, галактики и другие объекты. Можно считать, что темная энергия — это свойство самого пространства.

Детальный анализ анизотропии реликтового излучения позволил определить плотность каждого из трех видов материи. Было установлено, что «обычная» материя, изучению которой человечество посвятило всю предшествующую историю, составляет всего лишь несколько процентов массы Вселенной. Примерно 24% составляет темная материя, а 74%, большая часть массы Вселенной, приходится на долю темной энергии — нового вила материи, уникальные свойства которой ещё предстоит изучить.

Развитие современной космологии в очередной раз показало безграничные возможности человеческого разума, способного исследовать сложнейшие процессы, которые происходят во Вселенной на протяжении миллиардов лет.

Вопросы

  1. Какие факты свидетельствуют о том, что во Вселенной происходит процесс эволюции?
  2. Каково соотноше­ние масс «обычной» материи, темной материи и темной энер­гии во Вселенной?