Искусственная радиоактивность. Ядерные и термоядерные реакции

Термоядерные реакции

Масса покоя ядра урана больше суммы масс покоя осколков, на которые делится ядро. Для легких ядер дело обстоит как раз наоборот. Так, масса покоя ядра гелия значительно меньше суммы масс покоя двух ядер тяжелого водорода, на которые можно разделить ядро гелия.

Это означает, что при слиянии легких ядер масса покоя уменьшается и, следовательно, должна выделяться значительная энергия. Подобного рода реакции слияния легких ядер могут протекать только при очень высоких температурах. Поэтому они называются термоядерными.

Термоядерные реакции — это реакции слияния легких ядер при очень высокой температуре.

Для слияния ядер необходимо, чтобы они сблизились на расстояние около 10-12 см, т. е. чтобы они попали в сферу действия ядерных сил. Этому сближению препятствует кулоновское отталкивание ядер, которое может быть преодолено лишь за счет большой кинетической энергии теплового движения ядер.

Энергия, которая выделяется при термоядерных реакциях в расчете на один нуклон, превышает удельную энергию, выделяющуюся при цепных реакциях деления ядер. Так, при слиянии тяжелого водорода — дейтерия — со сверхтяжелым изотопом водорода — тритием — выделяется около 3,5 МэВ на один нуклон. При делении же урана выделяется примерно 1 МэВ энергии на один нуклон.

Термоядерные реакции играют большую роль в эволюции Вселенной. Энергия излучения Солнца и звезд имеет термоядерное происхождение. По современным представлениям, на ранней стадии развития звезда в основном состоит из водорода. Температура внутри звезды столь велика, что в ней протекают реакции слияния ядер водорода с образованием гелия. Затем при слиянии ядер гелия образуются и более тяжелые элементы.

Термоядерные реакции играют решающую роль в эволюции химического состава вещества во Вселенной. Все эти реакции сопровождаются выделением энергии, обеспечивающей излучение света звездами на протяжении миллиардов лет.

Осуществление управляемых термоядерных реакций на Земле сулит человечеству новый, практически неисчерпаемый источник энергии. Наиболее перспективной в этом отношении реакцией является реакция слияния дейтерия с тритием:

В этой реакции выделяется энергия 17,6 МэВ. Поскольку трития в природе нет, он должен вырабатываться в самом термоядерном реакторе из лития.

Экономически выгодная реакция, как показывают расчеты, может идти только при нагревании реагирующих веществ до температуры порядка сотен миллионов кельвин при большой плотности вещества (1014 — 1015 частиц в 1 см3). Такие температуры могут быть в принципе достигнуты путем создания в плазме мощных электрических разрядов. Основная трудность на этом пути состоит в том, чтобы удержать плазму столь высокой температуры внутри установки в течение 0,1 — 1 с.

Никакие стенки из вещества здесь не годятся, так как при столь высокой температуре они сразу же превратятся в пар. Единственно возможным является метод удержания высокотемпературной плазмы в ограниченном объеме с помощью очень сильных магнитных полей. Однако до сих пор решить эту задачу не удалось из-за неустойчивости плазмы. Неустойчивость приводит к диффузии части заряженных частиц сквозь магнитные стенки.

Для уменьшения неоднородности магнитного поля, приводящей к изменению конфигурации плазменного столба и соответственно к его неустойчивости, академиками А. Д. Сахаровым и И. Е. Таммом была предложена форма плазменного столба в виде тора, которая используется на установке, называемой «Токамак».

На этой установке удалось получить плазму температурой 1,3 · 107 К. Однако проблема ее удержания еще не решена.

Помимо энергетического преимущества, при термоядерных реакциях не образуются радиоактивные отходы, т. е. не надо решать проблемы загрязнения окружающей среды.

В настоящее время существует уверенность в том, что рано или поздно термоядерные реакторы будут созданы.

Ученые нашей страны достигли больших успехов в создании управляемых термоядерных реакций. Эти работы были начаты под руководством академиков Л. А. Арцимовича и М. А. Леонтовича и продолжаются их учениками.

Пока же удалось осуществить лишь неуправляемую реакцию синтеза взрывного типа в водородной (или термоядерной) бомбе.

Осуществление управляемых термоядерных реакций способно решить энергетическую проблему человечества. Неуправляемые термоядерные реакции в водородных бомбах могут человечество уничтожить.

Домашнее задание:
I. Учить § 110; повторить §§ 104 – 106.
II. Ответить на вопросы:
1. Почему реакция слияния легких ядер происходит только при очень высоких температурах?
2. Как объяснить с точки зрения закона сохранения энергии, что энергия выделяется как при делении тяжелых ядер, так и при слиянии легких ядер?