Архив рубрики: 03. Электромагнитное поле

Контрольная работа № 3 по теме «Электромагнитное поле»

Вариант I

  1. Квадратная рамка расположена в однородном магнит­ном поле, как показано на рисунке. Направление тока в рамке указано стрелками.

Сила, действующая на нижнюю сторону рамки, на­правлена

1) вниз;   2) вверх;    3) из плоскости листа на нас;   4) в плоскость листа от нас

Читать далее… →

Типы спектров. Спектральный анализ.

В опыте, изображённом на рисунке 149, при пропускании солнечного света через призму получался спектр в виде сплошной полосы. В ней были представлены все цвета (т. е. волны всех частот от 4,0 · 1014 до 8,0 · 1014 Гц), плавно переходящие один в другой. Такой спектр называется сплошным или непрерывным (см. рис. 150, а).

Читать далее… →

Преломление света.

Физический смысл показателя преломления.
В курсе физики 8 класса вы познакомились с явлением преломления света. Теперь вы знаете, что свет представляет собой электромагнитные волны определенного диапазона частот. Опираясь на знания о природе света, вы сможете понять физическую причину преломления и объяснить многие другие связанные с ним световые явления.

Читать далее… →

Электромагнитная природа света. Интерференция

В начале XIX в. опытным путём была подтверждена справедливость гипотезы о волновой природе света. В то время ни о каких волнах, кроме механических, учёные ещё не знали. Поэтому считали, что свет, подобно звуку, представляет собой механическую упругую волну.

Читать далее… →

Принципы радиосвязи и телевидения.

Урок 43. Принципы радиосвязи и телевидения.

Передача и приём информации посредством электромагнитных волн называется радиосвязью. Линии радиосвязи используют, например, для осуществления радиотелефонной связи, передачи телеграмм, факсимиле (факсов), радиовещательных и телевизионных программ.

Радиосвязь представляет собой довольно сложный процесс. Поэтому рассмотрим лишь наиболее общие принципы одного из её видов — радиотелефонной связи, т. е. передачи звуковой информации, например речи и музыки, с помощью электромагнитных волн.

Для получения целостного представления об этом процессе обратимся к блок-схеме, представленной на рисунке 139.

На рисунке 139, а изображено передающее устройство, состоящее из генератора высокочастотных колебаний, микрофона, модулирующего устройства и передающей антенны.

В микрофон поступают звуковые колебания (речь, музыка и т. д.). Они преобразуются микрофоном в электрические колебания такой же формы, какую имеют звуковые. Из микрофона низкочастотные электрические колебания поступают в модулирующее устройство. Туда же из генератора подаются высокочастотные колебания постоянной амплитуды.

В модулирующем устройстве амплитуду высокочастотных колебаний изменяют (модулируют) с помощью электрических колебаний звуковой частоты. В результате амплитуда становится переменной, причём меняется она точно так же, как и поступающие из микрофона электрические колебания. Такие высокочастотные модулированные по амплитуде колебания несут в себе информацию о форме звукового сигнала. Поэтому частота высокочастотных колебаний называется несущей.

Процесс изменения амплитуды высокочастотных колебаний с частотой, равной частоте звукового сигнала, называется амплитудной модуляцией.

Под воздействием высокочастотных модулированных колебаний в передающей антенне возникает переменный ток высокой частоты. Этот ток порождает в пространстве вокруг антенны электромагнитное поле, которое распространяется в пространстве в виде электромагнитных волн и достигает антенн радиоприёмных устройств.

Вы уже знаете о том, что мощность электромагнитной волны пропорциональна четвёртой степени её частоты: Р ~ v4.

Электромагнитные волны звуковых, т. е. низких, частот (от 16 до 20 000 Гц) имеют малую мощность и после излучения очень быстро затухают. Этим и вызвана необходимость использования модулированных радиоволн, которые благодаря высокой несущей частоте распространяются на большие расстояния и при этом содержат информацию о форме передаваемых звуковых колебаний.

Как видно из рисунка 139, б, радиоприёмное устройство состоит из приёмной антенны, приёмного резонирующего колебательного контура и детектора — элемента, пропускающего переменный ток только в одном направлении.

В приёмную антенну поступают волны от множества радиостанций. Но каждая радиостанция осуществляет вещание только на строго определённой, отведённой ей несущей частоте.

Настраивая свой радиоприёмник на частоту нужной радиостанции, вы меняете собственную частоту имеющегося в приёмнике колебательного контура так, чтобы она была равна несущей частоте данной радиостанции, т. е. чтобы контур был настроен в резонанс с колебаниями, генерируемыми на данной радиостанции. При этом амплитуда колебаний выбранной радиостанции в контуре вашего приёмника будет максимальной по сравнению с амплитудами колебаний, поступивших от радиостанций, вещающих на других несущих частотах. В этом заключается второе назначение несущей частоты — она обеспечивает возможность настройки на частоту нужной радиостанции.

Принятые колебания сначала усиливают. Затем для преобразования высокочастотных модулированных колебаний в звуковые производят детектирование, т. е. процесс, обратный модуляции. Детектирование проводится в два этапа: сначала с помощью детектора (представляющего собой элемент с односторонней проводимостью) из высокочастотных модулированных колебаний получают высокочастотный пульсирующий ток (рис. 140, а), а затем в динамике этот ток сглаживается и преобразуется в колебания звуковых частот (рис. 140, б). На возможность использования электромагнитных волн для передачи радиосигналов[1] впервые указал в 1889 г. Александр Степанович Попов. В 1896 г. при помощи сконструированных им передатчика и приёмника радиосигналов передал первую в мире радиограмму, состоящую из двух слов «Генрих Герц».

При передаче телевизионных программ высокочастотные колебания модулируются не только звуковым, но и видеосигналом. Это осуществляется с помощью телевизионной передающей трубки, которая преобразует оптическое изображение в электромагнитные колебания. Модулированные таким образом высокочастотные колебания заключают в себе информацию и о звуке, и об изображении.

В телевидении используются более высокие (порядка миллиардов герц) несущие частоты.

Домашнее задание:

  1. I. Учить § 46
  2. II. Ответить на вопросы:

1.Что называется радиосвязью?

  1. Приведите 2 — 3 примера использования линий радиосвязи.
  2. Используя рисунки 139 и 140, расскажите о принципах осуществления радиотелефонной связи.
  3. Частота каких колебаний называется несущей?
  4. В чём заключается процесс амплитудной модуляции электрических колебаний?
  5. 6. Почему в радиосвязи не используются электромагнитные волны звуковых частот?
  6. В чём заключается процесс детектирования колебаний?

III. Решить упражнение 43.

Период колебаний зарядов в антенне, излучающей радиоволны, равен 10-7 с. Определите частоту этих радиоволн.

[1] Радиосигналы — электромагнитные волны, излучаемые в течение коротких промежутков времени в диапазоне частот от 104 до 1010 кГц.

Колебательный контур.

Получение электромагнитных колебаний
Радиовещание (т. е. передача звуковой информации на большие расстояния) осуществляется посредством электромагнитных волн, излучаемых антенной радиопередающего устройства. Напомним, что источником электромагнитных волн являются ускоренно движущиеся заряженные частицы. Значит, для того чтобы антенна излучала электромагнитные волны, в ней нужно возбуждать колебания свободных электронов. Такие колебания называются электромагнитными (поскольку они порождают электромагнитное поле, распространяющееся в пространстве в виде электромагнитных волн).

Читать далее… →

Конденсатор

24 марта 1896 г. на заседании Российского физико-химического общества физик и электротехник Александр Степанович Попов с по­мощью изобретенного им радиопередатчика продемонстрировал пе­редачу сигналов на расстояние 250 м. Он передал азбукой Морзе [1] первую в мире радиограмму из двух слов: «Генрих Герц». Переда­ча осуществлялась посредством электромагнитных волн радиодиапазона, т. е. была беспроводной. В то время это было воспринято как чудо.

Читать далее… →