Сила трения. Трение покоя.

Санки, скатившись с горы, движутся по горизонтальному пути неравномерно, скорость их постепенно уменьшается, и через некоторое время они останавливаются. Мальчик, разбежавшись, скользит на коньках по льду, но, как бы ни был гладок лёд, мальчик всё-таки останавливается. Останавливается и велосипед, когда велосипедист прекращает вращать педали. Мы знаем, что причиной всякого изменения скорости движения (в данном случае уменьшения) является сила. Значит, и в рассмотренных примерах на каждое движущееся тело действовала сила.

При соприкосновении одного тела с другим возникает взаимодействие, препятствующее их относительному движению, которое называют трением. А силу, характеризующую это взаимодействие, называют силой трения. Она обозначается буквой F с индексом: Fтр (рис. 81).

Сила трения — это ещё один вид силы, отличающийся от рассмотренных ранее силы тяжести и силы упругости.

Одной из причин возникновения силы трения является шероховатость поверхностей соприкасающихся тел. Даже гладкие на вид поверхности тел имеют неровности и царапины. На рисунке 82, а неровности изображены в увеличенном виде. Когда одно тело скользит или катится по поверхности другого, эти неровности цепляются друг за друга, что создаёт некоторую силу, задерживающую движение.

Другая причина трения — взаимное притяжение молекул соприкасающихся тел.

Возникновение силы трения обусловлено главным образом первой причиной, когда поверхности тел шероховаты. Но если поверхности тел хорошо отполированы, при соприкосновении часть их молекул располагается очень близко друг к другу. В этом случае начинает заметно проявляться притяжение между молекулами соприкасающихся тел.

Силу трения можно уменьшить во много раз, если ввести между трущимися поверхностями смазку. Слой смазки (рис. 82, б) разъединяет поверхности трущихся тел. В этом случае соприкасаются не поверхности тел, а слои смазки. Смазка же в большинстве случаев жидкая, а трение слоев жидкости меньше, чем твёрдых поверхностей. Например, на коньках малое трение при скольжении по льду объясняется также действием смазки. Между коньками и льдом образуется тонкий слой воды. В технике в качестве смазки широко применяют различные масла.

При скольжении одного тела по поверхности другого возникает трение, которое называют трением скольжения. Например, такое трение возникает при движении саней и лыж по снегу. Если же одно тело не скользит, а катится по поверхности другого, то трение, возникающее при этом, называют трением качения. Так, при движении колёс вагона, автомобиля, при перекатывании брёвен или бочек по земле проявляется трение качения.

Силу трения можно измерить. Так, чтобы измерить силу трения скольжения деревянного бруска по доске или по столу, надо прикрепить к нему динамометр (рис. 83, а). Затем равномерно двигать брусок по доске, держа динамометр горизонтально. Что при этом покажет динамометр? На брусок в горизонтальном направлении действуют две силы. Одна сила — сила упругости пружины динамометра, направленная в сторону движения. Вторая сила — это сила трения, направленная против движения. Так как брусок движется равномерно, то это значит, что равнодействующая этих двух сил равна нулю. Следовательно, эти силы равны по модулю, но противоположны по направлению. Динамометр показывает силу упругости (силу тяги), равную по модулю силе трения.

Таким образом, измеряя силу, с которой динамометр действует на тело при его равномерном движении, мы измеряем силу трения.

Если на брусок положить груз, например гирю, и измерить по описанному выше способу силу трения, то она окажется больше силы трения, измеренной без груза.

Чем больше сила, прижимающая тело к поверхности, тем больше возникающая при этом сила трения.

Положив деревянный брусок на круглые палочки, можно измерить силу трения качения (рис. 83, б). Она оказывается меньше силы трения скольжения.

Таким образом, при равных нагрузках сила трения качения всегда меньше силы трения скольжения. Именно поэтому люди ещё в древности применяли катки для перетаскивания больших грузов, а позднее стали широко использовать колесо.

Трение покоя

Мы познакомились с силой трения, возникающей при движении одного тела по поверхности другого. Но можно ли говорить о силе трения между соприкасающимися твёрдыми телами, если они находятся в покое?

Когда тело находится в покое на наклонной плоскости, оно удерживается на ней силой трения. Действительно, если бы не было трения, то тело под действием силы тяжести соскользнуло бы вниз по наклонной плоскости.

Рассмотрим случай, когда тело находится в покое на горизонтальной плоскости. Пусть, например, на полу стоит шкаф. Попробуем его передвинуть. Если на шкаф нажать слабо, то он не тронется с места. Почему? Действующая со стороны человека сила в этом случае уравновешивается силой трения между полом и ножками шкафа. Так как эта сила существует между покоящимися друг относительно друга телами, то эту силу принято называть силой трения покоя.

На рисунке 85 изображён транспортёр, который устанавливают в крупных торговых центрах для перемещения людей. Люди удерживаются на ленте транспортёра силой трения покоя.

Сила трения покоя удерживает гвоздь, вбитый в доску, не даёт развязаться банту на ленте, удерживает нитку, которой сшиты два куска ткани, и т. п.

Трение в природе и технике

В природе и технике трение имеет большое значение. Трение может быть полезным и вредным. Когда оно полезно, его стараются увеличить, когда вредно — уменьшить.

Без трения покоя ни люди, ни животные не могли бы ходить по земле, так как при ходьбе мы отталкиваемся ногами от земли. Когда трение между подошвой обуви и землёй (или льдом) мало, например в гололедицу, то отталкиваться от земли очень трудно, ноги при этом скользят. Чтобы ноги не скользили, тротуары посыпают песком. Это увеличивает силу трения между подошвой обуви и льдом.

Не будь трения, предметы выскальзывали бы из рук.

Сила трения останавливает автомобиль при торможении, но без трения покоя он не смог бы и начать движение. Колеса, вращаясь, проскальзывали бы, а автомобиль продолжал бы стоять на месте, буксовал. Чтобы увеличить трение, поверхность шин у автомобиля делают с ребристыми выступами (рис. 86). Зимой, когда дорога бывает особенно скользкая, её посыпают песком, специальными реагентами или очищают от снега.

У многих растений и животных имеются различные органы, служащие для хватания (усики растений, хобот слона, цепкие хвосты лазающих животных). Все они имеют шероховатую поверхность для увеличения трения.

Вам уже известно, что во многих случаях трение вредно и с ним приходится бороться. Например, во всех машинах из-за трения нагреваются и изнашиваются движущиеся части. Для уменьшения трения соприкасающиеся поверхности делают гладкими, между ними вводят смазку. Чтобы уменьшить трение вращающихся валов машин и станков, их опирают на подшипники (рис. 87). Деталь подшипника, непосредственно соприкасающуюся с валом, называют вкладышем. Вкладыши делают из твёрдых материалов — бронзы, чугуна или стали. Внутреннюю поверхность их покрывают особыми материалами, чаще всего баббитом (это сплав свинца или олова с другими металлами), и смазывают. Подшипники, в которых вал при вращении скользит по поверхности вкладыша, называют подшипниками скольжения.

Мы знаем, что сила трения качения при одинаковой нагрузке значительно меньше силы трения скольжения. На этом явлении основано применение шариковых и роликовых подшипников. В таких подшипниках вращающийся вал не скользит по неподвижному вкладышу подшипника, а катится по нему на стальных шариках или роликах.

Устройство простейших шарикового и роликового подшипников изображено на рисунке 88. Внутреннее кольцо подшипника, изготовленное из твёрдой стали, насажено на вал. Наружное же кольцо закреплено в корпусе машины. При вращении вала внутреннее кольцо катится на шариках или роликах, находящихся между кольцами.

Замена в машинах подшипников скольжения шариковыми или роликовыми подшипниками позволяет уменьшать силу трения в 20— 30 раз.

Шариковые и роликовые подшипники используют в разнообразных машинах: автомобилях, токарных станках, электрических двигателях, велосипедах и т. д. Без подшипников невозможно представить современную промышленность и транспорт.

Лабораторная работа № 7. «Измерение силы трения с помощью динамометра»

Цель работы: Выяснить, от чего зависит сила трения скольжения, и сравнить её с силой трения качения.

Приборы и материалы: Динамометр, деревянный брусок, две цилиндрические палочки (круглые карандаши), набор грузов.

Указания к работе:

  1. Положите брусок на деревянную поверхность стола.
  2. Прикрепите к бруску динамометр и постарайтесь равномерно перемещать брусок по поверхности. Динамометр будет показывать силу тяги, равную силе трения. Запишите показания динамометра в таблицу 11.
  3. Определите вес бруска и запишите в таблицу. Сравните вес бруска с силой трения.
  4. Поставив груз на брусок, повторите измерения поочерёдно с одним грузом, а затем с двумя (см. пункты 2 и 3).
  5. Положите брусок на пластмассовую поверхность и, перемещая его равномерно, определите силу трения. Показания динамометра запишите в таблицу 11.
  6. Разместите брусок на двух цилиндрических палочках и равномерно перемещайте его по столу. Показания динамометра запишите в таблицу 11.
  7. Проанализируйте результаты измерений.

Таблица 11

№ опыта1234
Сила трения Fтр, Н
Вес тела Р, Н

Домашнее задание:
I. Учить §§ 32-34
II. Ответить на вопросы:
1. Какие известные вам наблюдения и опыты показывают, что существует сила трения?
2. В чём заключаются причины трения?
3. Объясните, как смазка влияет на силу трения.
4. Какие виды трения вы знаете?
5. Как можно измерить силу трения?
6. Как показать, что сила трения зависит от силы, прижимающей тело к поверхности?
7. Как показать на опытах, что при равных нагрузках сила трения скольжения больше силы трения качения? Как это используется в технике?

8. Какая сила удерживает тела на наклонной плоскости?
9. Почему шкаф сдвигается с места под действием только определённой силы? Приведите примеры практического использования силы трения покоя.

10. Приведите примеры, показывающие, что трение может быть полезным. Каково значение трения на транспорте?
11. Приведите примеры, когда трение может быть вредным.
12. Какие способы увеличения и уменьшения трения вы знаете?
13. Для какой цели используют в машинах подшипник?
14. Как устроен подшипник скольжения; шариковый подшипник? Какой из них заметнее уменьшает трение?
III. Решить упражнение 13.
Лыжник спускается с горы и далее скользит по горизонтальной лыжне. На рисунке 84 изобразите силу трения и точку её приложения.
IV. Доделать лабораторную работу № 7.